
p ()

URL: http://www.elsevier.nl/locate/entcs/volume67.html 18 pages

Rank-Based Symbolic Bisimulation
(and Model Checking)

A. Dovier a;2 R. Gentilini a;3 C. Piazza b;4 A. Policriti a;5

a Dip. di Matematica e Informatica, Univ. di Udine.

Via delle Scienze 206, 33100 Udine (Italy).

b Dip. di Informatica, Univ. Ca' Foscari di Venezia.

Via Torino 155, 30173 Mestre { Venezia (Italy).

Abstract

In this paper we propose an eÆcient symbolic algorithm for the problem of deter-

mining the maximum bisimulation on a �nite structure. The starting point is an

algorithm, on explicit representation of graphs, which saves both time and space

exploiting the notion of rank. This notion provides a layering of the input model

and allows to proceed bottom-up in the bisimulation computation. In this paper we

give a procedure that allows to compute the rank of a graph working on its symbolic

representation and requiring a linear number of symbolic steps. Then we embed it in

a fully symbolic, rank-driven, bisimulation algorithm. Moreover, we show how the

notion of rank can be employed to optimize the CTL Model Checking procedures.

Key words: bisimulation, ordered binary decision diagrams,

symbolic algorithms, model checking.

1 Introduction

Space requirement are a crucial parameter to be kept into account in many

Computer Science areas (e.g., System Veri�cation, Concurrency Theory, Data

Bases, . . .). The so-called Symbolic approach is an attractive and promising

approach to the problem of saving space. The adjective Symbolic identi�es

all those data representations in which there is not an explicit exposition of

the whole information. Sharing of the same information is used as much

1
The work is partially supported by MIUR project: Automatic Aggregate |and number|

Reasoning for Computing.
2
Email: dovier@dimi.uniud.it

3
Email: gentilin@dimi.uniud.it

4
Email: piazza@dimi.uniud.it

5
Email: policrit@dimi.uniud.it

c
2002 Published by Elsevier Science B. V.

166

Dovier, Gentilini, Piazza, and Policriti

as possible, producing an implicit view of data. Algorithms manipulating

symbolic data are referred to as Symbolic Algorithms. Both the development

and the complexity analysis of symbolic algorithms are substantially di�erent

from the explicit case ones. Algorithms born for explicit representation are

often scarcely adaptable to the symbolic world. In graph algorithms, this

happens typically when the algorithms need to dynamically store one data

structure for each node. This kind of algorithms have to be completely re-

de�ned in a set-based fashion (c.f., for instance, [21] and [3]).

Ordered Binary Decision Diagrams (OBDDs) are a typical symbolic data-

structure. They are widely recognized as a fundamental mean to deal with the

state-explosion problem in Model Checking [8]. Bryant introduced OBDDs in

the context of digital circuit analysis and speci�cation [7], since they allow

to compactly represent boolean functions. In [15] Mc Millan suggests how to

exploit their power of reducing memory requirements in the veri�cation do-

main, giving life to what is nowadays known as Symbolic Model Checking. In

Symbolic Model Checking the models of the systems are compactly OBDD-

represented and the algorithms which check the validity of a formula take

advantage of the compact space representation. Rather than explicitly ma-

nipulate single states, they always deal with OBDDs representing subsets of

states.

Bisimulation is another central notion in Model Checking which allows

to reduce the systems state-spaces. The bisimulation quotient of a model

(graph) can be used to replaced it, since it strongly preserves the whole �-

calculus. Many algorithms for bisimulation computation have been proposed

in the literature both in the explicit [16,4,13] and in the symbolic [5] case.

In [9] the notion of rank has been introduced to develop a fast bisimula-

tion algorithm working on the explicit representation of graphs. This notion,

based on the concept of strongly connected component, allows to partition the

nodes of a graph and to drive a bottom-up computation of the bisimulation.

The algorithm runs in time O(jEj) on various classes of graphs, where jEj
is the size of the set of edges. Its worst case complexity is O(jEj log jN j),
where jN j is the size of the set of nodes. In this paper we present a procedure

that allows to compute the rank of a graph working on its symbolic repre-

sentation. This procedure avoids the construction of the strongly connected

components. In the symbolic case, the computation of the strongly connected

components would require O(jN j log jN j) operations [3]. On this ground, we

develop a symbolic rank-based bisimulation algorithm. Moreover, we point

out the usefulness of the notion of rank to improve both explicit and symbolic

CTL Model Checking procedures.

The paper is organized as follows: Section 2 presents the bisimulation

problem, while Section 3 reviews the main approaches for solving it both in

167

Dovier, Gentilini, Piazza, and Policriti

the explicit and in the symbolic case. In Section 4 we introduce the notion

of rank and the explicit rank-based bisimulation algorithm presented in [9].

Section 5 concerns with OBDDs representations of sets and relations. Section 6

is devoted to the description of the symbolic algorithm for computing the rank

of a graph, while Section 7 discusses how to include it in a fully symbolic rank-

based bisimulation algorithm. In Section 8 the employment of the notion

of rank for explicit and implicit CTL Model Checking is described. Some

conclusions are drawn in Section 9.

2 The Bisimulation Problem

In this section we introduce some basic notions used in the rest of the paper.

De�nition 2.1 Given a graph G = hN;Ei, a bisimulation on G is a relation

b � N �N such that:

(i) n1 b n2 ^ hn1; m1i 2 E) 9m2(m1 b m2 ^ hn2; m2i 2 E)

(ii) n1 b n2 ^ hn2; m2i 2 E) 9m1(m1 b m2 ^ hn1; m1i 2 E):

It is well-known (see [1]) that given a graph G the maximum bisimulation

� on G always exists, it is unique, and it is an equivalence relation over the

set of nodes of G. This notion allows us to �nd a minimum representation of

a graph G: G= �, where G= � is the graph obtained from G by collapsing all

equivalent nodes into a single one. This graph is usually called bisimulation

contraction of G.

It is important to point out that the problem of determining the maximum

bisimulation on a graph and the problem of recognizing whether two graphs

are bisimilar are equivalent.

The problem we consider is that of �nding the bisimulation contraction

of a graph. The algorithms described in the literature to solve the bisim-

ulation contraction problem are mainly based on a characterization of it in

terms of coarsest stable partition problem. As a matter of fact, the notion of

bisimulation can be connected to the notion of stability :

De�nition 2.2 Let E be a relation on the set N , E�1 be its inverse relation,

and P be a partition of N . P is said to be stable with respect to E i� for each

pair B1; B2 of blocks of P , either B1 � E�1(B2) or B1 \ E
�1(B2) = ;.

A partition P re�nes (is �ner than) a partition Q if all the blocks in P are

subsets of blocks in Q. Equivalently, Q is said to be coarser than P .

De�nition 2.3 Let E be a relation on the set N and Q be a partition of N .

The coarsest stable partition problem is the problem of �nding the coarsest

partition P re�ning Q that is stable w.r.t. E. When Q is not given, we

assume it to be the trivial partition Q = fNg.

The above de�ned problem, which emerged in automata minimization, is

equivalent to the problem of �nding the bisimulation contraction of a graph.

168

Dovier, Gentilini, Piazza, and Policriti

Theorem 2.4 Let G = hN;Ei be a graph and P be the coarsest partition of N

stable w.r.t. E. The equivalence relation induced by P on N is the maximum

bisimulation � on G.

Being able to reduce a graph by bisimulation is a critical step in Model

Checking. The bisimulation-quotient strongly preserves LTL, CTL, CTL�

and the whole �-calculus [8]. However it is important that the bisimulation

computation is not an heavy overload for the model checking procedure.

3 Related Works

In the area of explicit Model Checking the models of the systems to be analyzed

are represented by using adjacency-lists or other data-structures in which all

the states are kept separately. On the other hand, the philosophy behind

Symbolic Model Checking is that of using data-structures which maximize the

sharing of information. In particular, in Symbolic Model Checking OBDDs

(Ordered Binary Decision Diagrams) are used to give a compact representation

of both the labelled graph modelling the system and of all partial computation

results. Evidences of the usefulness of symbolic techniques to deal with the

notorious state-explosion problem arising in Model Checking can be found

in [8]. Since bisimulation is used in this context to reduce the state-spaces it

is important/necessary to consider the problem from both an explicit and a

symbolic point of view.

As far as the explicit case is concerned, the �rst signi�cant algorithmic

result for the solution of the bisimulation problem is due to Hopcroft. In [11],

he presented an O(jN j log(jN j)) algorithm for the minimization of the number

of states of a �nite-state automaton. The problem is equivalent to that of

determining the coarsest partition of a set stable with respect to a �nite set of

functions. A variant of this problem is studied in [17], where it is shown how

to solve it in linear time in case of a single function. Finally, in [16] Paige and

Tarjan solved the problem for the general case (i.e., bisimulation) in which the

stability requirement is relative to a relation E (on a set N) with an algorithm

whose complexity is O(jEj log jN j).

The main feature of the linear solution to the single function coarsest

partition problem (cf. [17]) is the use of a positive strategy in the search for

the coarsest partition: the starting partition is the partition with singleton

classes and the output is built via a sequence of steps in which two or more

classes are merged. Instead, both Hopcroft's solution to the (more diÆcult)

many functions coarsest partition problem and Paige and Tarjan bisimulation

algorithm, are based on a (more natural) negative strategy. The starting

partition is the input partition and during each step the classes which do not

satisfy the stability condition are split. The appealing complexity results of

the procedures in [11] and [16] come from the use of a clever ordering (the

so-called process the smallest half policy) for processing classes.

169

Dovier, Gentilini, Piazza, and Policriti

In [9] a bisimulation algorithm for explicit representation which combines

positive and negative strategies has been presented. Such a combination relies

on the possibility of layering the input model and proceed in the stabilization

process bottom-up, on the de�ned layers. The notion of rank drives the above

model strati�cation 6 . The just mentioned rank-based bisimulation proce-

dure [9] has a time complexity which is in some cases linear, while in the

worst case is the same as the one of Paige and Tarjan. Moreover, since during

each iteration it refers only to the nodes at a �xed rank, it is clearly space

eÆcient. In the next section we recall how the explicit routine in [9] works.

Other explicit procedures for the bisimulation problem, tailored for on-

the-
y model checkers, have been presented by Bouajjani, Fernandez, and

Halbwachs in [4] and by Lee and Yannakakis in [14].

In the symbolic case a popular bisimulation algorithm is the one proposed

in [5] by Bouali and de Simone. It implements the na��ve negative strategy

optimizing the boolean operations involved: �rst, the set of reachable nodes

R is computed through a symbolic visit of the graph, then, starting from R�R

all the pairs hu; vi for which it is possible to prove that u is not bisimilar to v

are removed. Experimental results about the performances of the algorithm

are presented, while there is not a deep discussion of its complexity in terms

of basic OBDD operations.

In [10] Fisler and Vardi analyze the complexity of the symbolic versions

of the algorithms of Paige and Tarjan [16], Bouajjani, Fernandez, and Halb-

wachs [4], and Lee and Yannakakis [14]. In particular, they determine the

number of basic symbolic operations involved in each iteration of the three al-

gorithms and they conclude, through experimental results, that an optimized

version of the algorithm in [16], which splits only reachable blocks, performs

better than the other two algorithms, since it gains from the right choice of

the splitters.

4 The Explicit Rank-Based Bisimulation Algorithm

The main idea behind the explicit bisimulation algorithm presented in [9] is

the use of the notion of rank to both initialize the partition and drive the

order of the splitting operations. In order to present the notion of rank we

�rst recall the notion of strongly connected components.

De�nition 4.1 Given a graph G = hN;Ei, let Gscc = hN scc; Escci be the

graph obtained as follows:

N scc = fc : c is a strongly connected component in Gg

Escc = fhc1; c2i : c1 6= c2 and (9n1 2 c1)(9n2 2 c2)(hn1; n2i 2 E)g

6 We refer to rank-based algorithms whenever some notion of rank is exploited in this sense.

170

Dovier, Gentilini, Piazza, and Policriti

Given a node n 2 N , we refer to the node of Gscc associated to the strongly

connected component of n as c(n).

We need to distinguish the acyclic (well-founded) part of a graph G from

its cyclic (non-well-founded) part.

De�nition 4.2 Let G = hN;Ei and n 2 N . G(n) = hN(n); E � N(n)i is the

subgraph of G of the nodes reachable from n. WF (G), the well-founded part

of G, is WF (G) = fn 2 N : G(n) is acyclicg:

The nodes in WF (G) are said to be well-founded, while the other nodes

are said to be non-well-founded.

De�nition 4.3 Let G = hN;Ei. The rank of a node n of G is de�ned as:

8>>>>>><
>>>>>>:

rank (n) = 0 if n is a leaf in G

rank (n) = �1 if c(n) is a leaf in Gscc and n is not a leaf in G

rank (n) = max(f1 + rank (m) : hc(n); c(m)i 2 Escc
;m 2WF (G)g [

frank (m) : hc(n); c(m)i 2 Escc
;m 62WF (G)g) otherwise

In Figure 1 we report the rank-based algorithm presented in [9]. The

complexity of this algorithm easily follows from the following considerations.

Since Gscc can be computed using Tarjan's classical algorithm ([21]) in time

O(jN j+ jEj), step (1) can be performed in time O(jN j+ jEj). Given a graph

G = hN;Ei, let � = maxfrank (n) : n 2 Ng and, for i 2 f�1; 0; : : : ; �g, let

Bi = fn 2 N : rank (n) = ig. First, the algorithm initializes the partition P

to be re�ned using the blocks Bi. For each rank i a bisimulation procedure

Bisim is called on Gi = hBi; E � Bii and the partition P is updated on

nodes of rank greater than i. The procedure presented in [16] can be used

with a cost O(jE � Bij log jBij), while [17] would cost O(jE � Bij + jBij).

In this way all the edges connecting nodes at di�erent ranks are used only

once. Hence, the algorithm correctly computes the bisimulation quotient of

the input graph G and can be implemented so as to run with a worst case

complexity of O(jEj log jN j). Moreover, if G is an acyclic graph, step (7) is

super
uous and the overall cost is O(jN j + jEj). In [9] further optimizations

of the above algorithm are presented allowing a linear time complexity also in

other cases.

We conclude this section by observing that the space requirement of the

above algorithm can be reduced to the size of the largest Gi to be processed.

5 OBDDs and Symbolic Primitives

Before de�ning a rank-based symbolic bisimulation algorithm we review some

basic notions on OBDDs and computational complexity of symbolic proce-

dures. Binary Decision Diagrams (BDDs) are a fundamental data structure

171

Dovier, Gentilini, Piazza, and Policriti

Rank-Bisimulation(G = hN;Ei)

(1) for n 2 N do compute rank (n); | compute the ranks

(2) � := maxfrank (n) : n 2 Ng;

(3) for i = �1; 0; : : : ; � do Bi := fn 2 N : rank (n) = ig;

(4) P := fBi : i = �1; 0; : : : ; �g; { partition initialized with the Bi's

(5) G := collapse(G;B
�1

); | collapse all the nodes of rank �1

(6) for n 2 N \B
�1

do | re�ne blocks at higher ranks

for C 2 P and C 6= B
�1

do

P := (P n fCg) [ffm 2 C : hm;ni 2 Eg; fm 2 C : hm;ni =2 Egg;

(7) for i = 0; : : : ; � do

(a) Di := fX 2 P : X � Big; | �nd blocks currently at rank i

Gi := hBi; E � Bii; | isolate the subgraph of rank i

Di := Bisim(Gi;Di); | process rank i calling either [16] or [17]

(b) for X 2 Di do

G := collapse(G;X); | collapse nodes at rank i

(c) for n 2 N \Bi do | re�ne blocks at higher ranks

for C 2 P and C � Bi+1 [: : : [B� do

P := (P n fCg)[

ffm 2 C : hm;ni 2 Eg; fm 2 C : hm;ni =2 Egg;

Fig. 1. The algorithm in [9].

developed for eÆciently storing boolean functions. General BDD's were �rst

introduced in [12,2]. Bryant, introducing in [6] an ordering on the nodes of

BDDs (OBDDs), attracted attention on the possibility of their use in logic

design veri�cation. OBDDs can be used to represent symbolically each notion

which is expressible as a boolean function. In this paper, as it is usually done

in Symbolic Model Checking, we are interested in their use for the represen-

tation of sets and of binary relations (graphs).

Any boolean function f(x1; : : : ; xk) can be represented by a binary tree

of height k, whose leaves are labelled by 0 or 1. A path from the root to

one leaf represents a boolean assignment b1 : : : bk for the variables x1; : : : ; xk.

The label of the leaf will be either 0 or 1 according to the boolean value

of f(b1; : : : ; bk). Such a tree is called Binary Decision Tree (BDT) for the

function f . This BDT can be processed bottom-up so as to obtain an acyclic

graph that stores the same information in a more compact way: the OBDD for

the function f . OBDDs are canonical representations for boolean functions

172

Dovier, Gentilini, Piazza, and Policriti

since two boolean functions are equivalent if and only if they are associated

to the same OBDD [7].

The way OBDDs are usually employed in Model Checking to represent the

state space N , sets of states S � N , and the transition relation E, is based

on the following observations [8]:

� we can safely assume that N = f0; 1gu, i.e. each node is encoded as a binary

number;

� a set S � N is a set of binary strings of length u, characterized by its

characteristic boolean function �S : f0; 1gu ! f0; 1g, where

�S(s1; : : : ; su) = 1,hs1; : : : ; sui 2 S:

� E � N � N is a set of binary strings of length 2u and it can be described

by its characteristic function

�E(x1; : : : ; xu; y1; : : : ; yu) = 1,hx1; : : : ; xuiEhy1; : : : ; yui:

As �S and �E are boolean functions, it is possible to represent them using OB-

DDs. In particular, in the OBDD representing E the �rst u levels (variables)

represent the codes of the source nodes, while the second u levels represent

the codes of the target nodes.

Various packages have been developed to manipulate OBDDs: Somenzi's

CUDD from Colorado University [20], Lind-Nielsen's BuDDy, Biere's ABCD

package, Janssen's OBDD package from Eindhoven University of Technology,

Carnegie Mellon's OBDD package, the CAL package from Berkeley [18], K.

Milvang-Jensen's parallel package BDDNOW, Yang's PBF package. All these

packages are endowed with a number of built-in operations which allow to

manipulate the OBDDs and to combine them. Here we are interested in

some of these operations: the equality test, the boolean operations [;\; n,

and in the graph operations img (image computation) and preimg (pre-image

computation).

Equality test can be considered a constant time operation. This is possible

because if f and g are represented by two OBDDs in the unique table, then

the functions are equal if and only if f and g are two pointers to the same

memory location in the table.

Let us assume that B1 and B2 are the OBBDs representing the boolean

functions f1(x1; : : : ; xk) and f2(x1; : : : ; xk), respectively. Then B1 [B2 is an

OBDD that represents the function f1(x1; : : : ; xk)_ f2(x1; : : : ; xk) and can be

computed by dynamic programming in time O(jB1jjB2j), (similarly for \ and

n) 7 .

The graph operations img(A;G) and preimg(A;G) allow to �nd the nodes

that can be reached in one step forward (resp. backward) from a set of nodes A.

They are implemented using the relational product and they have a worst-case

7 If B is an OBDD, then jBj denotes the number of its nodes.

173

Dovier, Gentilini, Piazza, and Policriti

complexity which is exponential w.r.t. jAj and jGj. In the practical cases the

cost of the operations img and preimg even thought acceptable is the crucial

one. Thus, in the area of the symbolic algorithms [19], the operations img and

preimg are referred as symbolic steps and the time complexities of symbolic

algorithms are usually expressed as the number of symbolic steps that are

performed.

6 The Symbolic Rank-based Bisimulation Algorithm

In order to de�ne a symbolic version of the algorithm proposed in [9] (see Fig-

ure 1) we mainly need to eÆciently compute the rank-partition of the graph.

All the other operations involved are standard also in symbolic bisimulation

algorithms:

� collapse(G;X) (steps (5) and (7:b)) means that all the nodes in X are

bisimilar and we do not have to further process them;

� the operations in the for-loops at steps (6) and (7:c) are standard splitting

operations, i.e. they replace C with C \ preimg(X) and C n preimg(X);

� the extraction of the subgraph Gi at step (7:a) corresponds to the boolean

operation E � Bi(�x; �y) = E(�x; �y) ^ (Bi(�x) ^Bi(�y));

� the operation Bisim(Gi; Di) at step (7:a) can be performed by using a

symbolic bisimulation algorithm.

For the above reasons in this section we concentrate our e�orts on the rank

computation.

In the explicit case Tarjan's algorithm ([21]) identi�es, in O(jN j + jEj)
steps, all the strongly connected components of G. Once the graph Gscc has

been computed, it is possible to assign to each node of G its rank, accordingly

to De�nition 4.3, through a visit of G. Such a two-step procedure is appli-

cable also symbolically. However, the algorithm in [21] cannot be used as a

subroutine. The eÆcient computation of Gscc in [21] relies on the labelling

of each node of the input graph. In other words [21] is an explicit algorithm

that cannot be translated symbolically. Moreover, the most eÆcient symbolic

algorithm to determine Gscc, described in [3], requires O(jN j log jN j) symbolic

steps.

First we rephrase De�nition 4.3 exploiting a di�erent characterization of

the notion of rank. Such a reformulation leads us to the de�nition of a proce-

dure performing the rank-layering of a graph in O(jN j) symbolic steps, avoid-

ing the computation of Gscc.

De�nition 6.1 Let G = hN;Ei. For each node n 2 N let rank (n) be de�ned

174

Dovier, Gentilini, Piazza, and Policriti

as follows:

8
>>>>>><
>>>>>>:

rank (n) = 0 if n is a leaf of G

rank (n) = max(f1 + rank (m) : hn;mi 2 Eg) if n 2 WF(G) is not a leaf

rank (n) = max(f�1g [f1 + rank (m) :

m 2WF (G) ^ path(n;m)g) if n =2 WF(G)

where path(n;m) is true i� there is a path connecting n to m in G.

The following lemma states the equivalence between the above de�nition

and De�nition 4.3.

Lemma 6.2 Let G = hN;Ei. For each node n 2 N it holds:

rank (n) = rank (n):

Proof. Consider G
scc

= hN scc
; E

scci. We start by observing that if n;m 2 N

belong to the same strongly connected component, then by De�nition 4.3

it holds that rank (n) = rank (m). Since two nodes in the same strongly

connected component reach exactly the same nodes, it also holds, by De�ni-

tion 6.1, that rank (n) = rank (m). With the above consideration in mind we

will proceed in our proof by induction on the height of G
scc
.

For the base case, let n 2 N be such that c(n) is a leaf in G
scc
. Then, either

n is a leaf of G or there is no path from n to any node in WF (G). Hence, by

De�nition 4.3, either rank (n) = rank (n) = 0, or rank (n) = rank (n) = �1.

For the inductive step, let n 2 N be such that c(n) has height h + 1 in

G
scc
. If n 2 WF (G) then hn;mi 2 E i� hc(n); c(m)i 2 E

scc
. Moreover, if

hc(n); c(m)i is an edge of G
scc
, then m is a well-founded node. Hence, exploit-

ing the inductive hypothesis together with De�nition 4.3 and De�nition 6.1 it

holds that:

max(f1+rank (m) : hn;mi 2 Eg) = max(f1+rank (m) : hc(n); c(m)i 2 E
sccg)

and rank (n) = rank (n).

If n =2 WF (G), consider the set S = fm j hc(n); c(m)i 2 E
sccg. Since a

well-founded node is reachable from n i� it is reachable from some m 2 S, it

holds that rank (n) is:

max(frank (m) : m 2 S \WF (G)g [frank (m) : m 2 S nWF (G)g) [f�1g:

The inductive hypothesis and the de�nition of rank allow to easily to get the

thesis. 2

Hence, the rank of a well-founded node is the maximum length of a path

starting from it, while the rank of a non-well-founded node is 1 plus the

maximum length of a path starting from one of its well-founded descendants

175

Dovier, Gentilini, Piazza, and Policriti

(or �1 if such a path does not exist). The symbolic rank-layering algorithm
in Figure 2 proceed as follows: it identi�es the well-founded nodes, starting
from rank 0 up to rank p; then, it uses the well-founded nodes to compute the
ranks of the non-well-founded ones. In particular, �rst it uses the well-founded
nodes at rank p to determine the non-well-founded nodes at rank p+ 1, then
it uses the well-founded rank p � 1 to determine the non-well-founded rank
p, and so on. The linear complexity of the procedure follows from the fact
that each pre-image computation discovers at least one new node of the graph.
Hence, the number of symbolic steps is linear in the number of nodes of the
graph. Theorems 6.3 and 6.4 state the correctness and the complexity of the
proposed algorithm.

Symbolic Rank(G = hN;Ei)

(1) i := 0;

(2) SET := N ; | SET is the set of not-ranked nodes

(3) PRESET := preimg(SET); | PRESET = preimage of not-ranked nodes

(4) while SET 6= PRESET do

(a) Bi := SET n PRESET ;| Bi = well-founded nodes of rank i

(b) SET := PRESET ;| remove well-founded nodes of rank i from SET

(c) PRESET := preimg(SET);| update PRESET

(d) i := i+ 1;

| SET now contains only not well-founded nodes

(5) for j = i down to 1 do

FRONT := Bj�1;| put in FRONT well-founded nodes of rank j � 1

while preimg(FRONT) \ SET 6= ; do

(a) FRONT := preimg(FRONT) \ SET ;| discover new nodes

(b) SET := SET n FRONT ;| remove from SET the new nodes

(c) Bj := Bj [FRONT ;| assign rank j to the nodes discovered

(6) if SET 6= ; then B
�1

:= SET ;| rank �1 to the nodes still in SET

(7) return fB
�1

; B0; : : : ; B�g;

Fig. 2. The Symbolic Rank algorithm

Theorem 6.3 Let G = hN;Ei be a graph. The Symbolic Rank algorithm

always terminates and the classes of the partition over N induced by the rank

are fB
�1

; B0; : : : ; B�g.

Proof. Consider the set of nodes SET in the Symbolic Rank algorithm.
Such a set is initialized in step (2) to N . Then, whenever it is modi�ed, some

176

Dovier, Gentilini, Piazza, and Policriti

nodes are removed from it and no node is added. In particular, each iteration

of the �rst while-loop assigns to SET its pre-image. Such a pre-image is always

a subset of SET . Each iteration of the second while-loop removes from SET

the subset SET \ FRONT which is not empty (guard of the loop). The

above considerations ensure the termination of the two while-loop as well as

of the Symbolic Rank algorithm. Moreover, as soon as a subset has been

removed from SET it is inserted in one of the Bi (steps (4:a) and (5:c)), while

B
�1

(step (6)) collects whatever remain in SET . Thus fB
�1

; B0; : : : ; B�g

is a partition over N . We will now prove that each n 2 WF (G) is put in

the right rank-set (Brank(n)), during the rank (n) + 1-th iteration of the �rst

while-loop. Let us proceed by induction on the rank of n 2 WF (G). The �rst

iteration of the loop in step (4) puts in B0 all nodes in N n preimg(N) and it

is entered only if such a set is not empty. Thus, if there are not well-founded

nodes (N npreimg(N)), the �rst while-loop is not executed. Otherwise, all the

leaves of the graph are put in B0 during its �rst iteration. For the inductive

step, note that steps (4:b){(4:c) of the code ensure that, as soon as a vertex

is assigned to a rank, it is removed from SET . Hence, at the beginning of

the j + 1-th iteration, with j + 1 � maxfrank(n) + 1jn 2 WF (G)g, of the

�rst loop, SET is N deprived of all well-founded nodes having height less

then j. If SET is equal to its preimage (PRESET) we have that SET =

N nWF (G) and the loop is not entered. Otherwise Bj is equipped of all well-

founded nodes having height j. Now, consider the for-loop (step (5)) and let

 = maxfrank (n)jn 2 WF (G)g. We have just proved that, on the entering

to such a loop, SET contains all non-well-founded nodes of N . The �rst for-

loop iteration is executed only if i � 1 (i.e. only if some well-founded rank

has been generated) and inserts in B
+1 all nodes having some descendent

in B
 . Moreover, step (5:b) removes from SET all nodes just assigned to a

rank. Thus, an inductive argument can be again used to prove that the j-th

iteration, with j 2 f1; : : : ;
 + 1g, puts in B
+2�j, all non-well-founded nodes

whose maximal-height well-founded descendent has rank
 + 1 � j. Hence,

when step (6) is executed, SET contains all nodes having no well-founded

descendent which are put in B
1
. We can conclude that fB

�1
; B1; : : : ; Big

are the classes of the partition over N induced by the rank. 2

Theorem 6.4 Let G = hN;Ei be a graph. The Symbolic Rank algorithm

performs O(jN j) symbolic steps to produce the partition fB
�1

; B0; : : : ; B�g

over N .

Proof. Let
 be the maximum rank of a well-founded node and M = N n

WF (G). We will prove that the algorithm in Figure 2 performs at most

O(
+ jM j) symbolic steps. Trivially
 � jWF (G)j, hence it holds O(
+ jM j)

= O(jN j). The j-th iteration of the �rst while-loop discovers exactly those

well-founded nodes having rank j� 1 performing only one symbolic step (line

(4:c)). Hence, to execute lines (1){(4) we perform at most
 symbolic steps.

As stated by Theorem 6.3, before entering in the for-loop the set SET is

177

Dovier, Gentilini, Piazza, and Policriti

N n WF (G) = M . During each iteration of the innermost while-loop at
least one node is removed from SET (line (5:b)), since FRONT \ SET 6= ;
because of the while-guard. Moreover, SET is never augmented during the
computation. Since during each iteration of the innermost while-loop only
one pre-image operation is executed the global cost of lines (5){(7) is O(jM j)
symbolic steps and we have the thesis. Note that also the number of set-
di�erences, intersections and unions involved in the procedure is O(jN j). 2

7 Local Bisimulation Splitting

As we said in Section 3, in [10] Fisler and Vardi analyzed the symbolic cost
of three symbolic bisimulation algorithms. In particular, they prove that for
the symbolic version of the Paige and Tarjan algorithm the overall complexity
depends on �(2M +D+ I+Q), where � is the number of iterations necessary
to reach the �x-point,M is the cost of an image or preimage operation and D,
I, and Q are the costs of one operation of di�erence, intersection, and equality
test, respectively.

A symbolic version of the Paige and Tarjan algorithm can be used in step
(7:a) of our symbolic algorithm. The di�erences between using directly the
symbolic version of the Paige and Tarjan algorithm and using it inside our
routine are similar to the di�erences that arises in the explicit case (see [9]).
First, we start with an initial partition, the rank-partition, which is �ner than
the one used in Paige and Tarjan algorithm, hence, in general, our computation
requires less iterations to converge to a �x-point. Moreover, during the i-
th iteration we work on the OBDD's representing the graph Gi, instead of
working on the OBDD representing the graphG. This implies that we perform
pre-image computations on smaller sets of nodes. Finally, we use the edges
which connect nodes at di�erent ranks only once, while it is possible that in
the Paige and Tarjan algorithm these edges are used more times.

The notion of rank provides a partition �ner than the trivial partition
fNg, which can be used in any algorithm which computes the maximum
bisimulation relation � using a negative strategy. The Bouali and de Simone
algorithm [5] starts with the total relation R0 = fhn;mi : n;m 2 Rg, where
R is the subset of N of reachable nodes and during the i-th iteration it re�nes
the relation Ri�1 in order to determine the relation Ri as follows:

Ri�1 n fhn;mi; hm;ni : 9n1(hn; n1i 2 E ^ 8m1(hm;m1i 2 E ! hn1;m1i 62 Ri�1))g:

It terminates when it reaches a �x-point which, in particular, coincides with
the maximum bisimulation relation. The correctness of the Bouali and de
Simone algorithm remains valid whenever the starting relation R0 contains
the maximum bisimulation relation �, i.e. �� R0. The more the relation R0

approximates the relation �, the less iterations are necessary to compute �.
Hence, once the rank has been symbolically computed we can exploit it to

178

Dovier, Gentilini, Piazza, and Policriti

speed up the Bouali and de Simone algorithm by starting with the relation

R0 = fhn;mi : rank (n) = rank (m)g:

The Ordered Binary Decision Diagram of R0 can be immediately built from

the OBDD's for B
�1

; B0; : : : ; B�, since the characteristic function of R0 is

(B
�1

(�x) ^ B
�1

(�y)) _

�_

i=0

Bi(�x) ^Bi(�y):

8 Rank-based Model Checking

In the previous sections the notion of rank turns out to be at the basis of

the development of an eÆcient bisimulation algorithm. In this section we

brie
y discuss how the same notion can be exploited in the optimization of

the classical Model Checking procedures. We deal with both the explicit and

the symbolic Model Checking for CTL [8].

In CTL each temporal operator X (neXt), U (Until), R (Release), F (Fi-

nally), and G (Globally), stating how/when a property holds along a path, has

to be immediately preceded by one of the path quanti�ers A (for all paths) and

E (there exists a path). Thus, CTL formulas are built using atomic propo-

sitions, the boolean connectives and the operators: AX, EX, AU , EU , AR,

ER, AF , EF , AG, and EG. 8

Standard CTL Model Checking procedures, in both the explicit and the

symbolic case, proceed by induction on the subformulas of the input formula:

in each iteration the subset of the states satisfying a given subformula is

discovered and labelled.

8.1 The Rank in Explicit Model Checking

In the explicit case, the core of the CTL Model Checking procedure [8] is

constituted of four subroutines. All of them get as input a CTL formula f

and a model whose states are already labelled with the sets of subformulas of f

that they satisfy. The �rst procedure deals with all formulas whose outermost

operator is a boolean connective: if, for instance, the input is f = :g, then
upon the return from the subroutine, the states not labelled with g are labelled

with f . The second procedure deals with formulas of the kind f = EXg: states

in the preimage of any state labelled with g are labelled with f . The third

and the fourth procedures process formulas whose outermost operators are

EU and EG, respectively. In the case of f = E(hUg), �rst all states labelled

with g are labelled with f . Then, recursively, all states labelled with h and

contained in the preimage of some state labelled with f , are labelled with f .

In case of f = EGg, the subgraph M 0 induced by those states labelled with g

8 It is suÆcient to consider AX , AU , and AG, or equivalently EX , AU , and EG.

179

Dovier, Gentilini, Piazza, and Policriti

is considered. Then, exploiting the algorithm in [21], the strongly connected

components of M 0 are built and each state in a non trivial scc is labelled with

f . Finally, recursively, all states in the preimage of some state labelled with

f are labelled with f .

The above procedures have a time complexity linear in the size of the

model. However, they require to keep in the memory the entire system. This

could be avoided if we were able to partition the input model in layers over

which the computation could be localized.

The CTL formulas whose outermost operator is a boolean one obviously

could be locally processed using any arbitrary graph strati�cation. More at-

tention has to be paid to formulas whose outermost operator is one of EX,

EU , and EG. For example, consider a model layering ensuring that each

path successively encounters lower and lower layers. Just a moment's thought

allows to realize that such a strati�cation permits to localize in successive lay-

ers also the determination of the states satisfying formulas of the form EX,

EU , and EG. Moreover, in the computation related to a single layer, CTL

standard procedures for EX, EU , and EG can be used. It is only necessary

to pay attention to correctly initialize the labelling of states in a given layer

Ri, provided the labelling on the lower layers Ri�1; : : : ; R0 is properly de�ned.

For instance consider the CTL formula E(hUg) and assume to have already

determined (i.e. labelled) states in layers R0; : : : ; Ri�1 satisfying it. Before

applying the classical CTL subroutine for the case EU on Ri we simply have

to label with E(hUg) those states in Ri having some successors in a lower

layer labelled with E(hUg). Note that this step requires to keep in memory

at most two layers of the model at a time.

The notion of rank in De�nition 4.3 allows to partition the model in layers

over which localizing CTL Model Checking as described above. In order to

use a localized CTL Model Checking an alternative notion of rank can be

the height of the strongly connected component to which the node belongs.

Such a rank de�nition is suitable for CTL Model Checking since it induces a

model strati�cation such that the layers successively encountered by a path

are of decreasing height. This notion of rank performs better than the one in

De�nition 4.3 relatively to CTL Model Checking. In fact, it induces a �ner

partition on the model and can be determined with the same time complexity

using Tarjan explicit algorithm in [21].

8.2 The Rank in Symbolic Model Checking

Symbolic Model Checking classical routines proceed by determining the sub-

sets of the states satisfying subformulas of the input formula. The above

subsets are represented as OBDDs: thus, inexpensive boolean operations on

OBDDs (cf. Section 5) allow to deal with subformulas built using propositional

connectives. The OBDDs for formulas such as AXg and EXg are obtained

symbolically implementing the so-called relational product (see [8]). Finally,

180

Dovier, Gentilini, Piazza, and Policriti

symbolic Model Checking, of formulas whose outermost operator is one of AU ,

EU , AG, and EG, relies on a �x-point characterization of these CTL opera-

tors. More speci�cally, the CTL operators AU and EU can be expressed as

least �x-points, whereas AG and EG can be expressed as greatest �x-point.

For instance, the �x-point characterization of AGg is the following one:

AGg = �Z:(g ^ AXZ):

In this section we brie
y discuss how to localize the above computation

in layers represented using OBDDs, where the graph's layers have the same

property required in the explicit case, i.e. they are entered by the paths

in a decreasing order. As pointed out in Section 8.1, the notion of rank in

De�nition 4.3 induces a graph partition with the above property. Moreover, in

Section 6 we proved that such a partition can be computed in a linear number

of symbolic steps.

Let B
�1

; B0(�x); : : : ; B�(�x) be the OBDDs representing the nodes at rank

�1; 0; : : : ; �, respectively and E(�x; �y) be the OBDD representing the relation

of the graph. It is possible to partition E(�x; �y) in the OBDDs:

� E
�1

(�x; �y); E0(�x; �y); : : : ; E�(�x; �y) representing sets of edges among nodes

having the same rank, i.e. Ei(�x; �y) = E(�x; �y) ^ (Bi(�x) ^ Bi(�y));

� E #1 (�x; �y); : : : ; E #� (�x; �y) representing sets of edges connecting states in

a given rank to states in lower ranks, i.e. E #i (�x; �y) = E(�x; �y) ^ Bi(�x) ^W
j<i

Bj(�y).

It is possible to build the OBDDs of states satisfying the CTL formula

AGg by ranks: at each rank, i, the OBDDs Bi(�x); Ei(�x; �y), and E #i (�x; �y)

are considered. The OBDD of the states at rank 0 and satisfying AGg can be

built by computing:

�Z:(B0 ^ g ^ AXZ):

Let AG� = AG0 _ : : : _ AGi be the OBDD of all states having rank less than

i + 1 and satisfying AGg. The OBDD of states at rank i + 1 satisfying AGg

can be obtained by computing:

K = AX(AG�

_ Bi+1) and �Z:(K ^ g ^ Bi ^ AXZ):

In the computation of K it is only necessary to use the OBDD E #i+1 (�x; �y)

to implement the AX operation. The AX operation involved in the �x-point

can be instead implemented by using Ei+1(�x; �y).

Similar arguments apply to the other CTL operators showing how the no-

tion of rank provides a method to distribute the computation on successive

layers. Such a layering, on the one hand speeds up the convergence of the

�x-point computations. On the other hand, it allows to use the OBDDs rep-

resenting the ranks which could be smaller than the OBDD for the entire

model.

181

Dovier, Gentilini, Piazza, and Policriti

9 Conclusions

The notion of rank has been introduced in [9] for developing a fast bisimulation

algorithm working on the explicit representation of graphs. This notion, based

on the concept of strongly connected component, allows to partition the nodes

of a graph and to guide the computation of the bisimulation algorithm. In

this work we have shown that the same notion can be used for optimizing

bisimulation algorithms on symbolic representation, as well. As a starting

point, we have shown how to perform the rank-based partition of a graph in a

linear number of symbolic operations. Moreover, we pointed out the usefulness

of the same notion for improving explicit and symbolic CTL Model Checking.

Acknowledgement

We thank Elio Panegai for the useful discussions from which this work bene�ts.

References

[1] Aczel., P., \Non-well-founded sets." Lecture Notes, Center for the Study of
Language and Information 14, Stanford, 1988.

[2] Akers, S. B., Binary decision diagrams, IEEE Transaction on Computers 27
(1978), pp. 509{516.

[3] Bloem, R., H. N. Gabow and F. Somenzi, An algorithm for strongly connected

component analysis in n logn symbolic steps, in: W. A. Hunt Jr. and S. D.
Johnson, editors, Proc. of Int. Conference on Formal Methods in Computer-

Aided Design (FMCAD'00), LNCS 1954 (2000), pp. 37{54.

[4] Bouajjani, A., J. C. Fernandez and N. Halbwachs, Minimal model generation,
in: E. M. Clarke and R. Kurshan, editors, Proc. Int'l Conference on Computer-

Aided Veri�cation CAV90, LNCS 531 (1990), pp. 197{203.

[5] Bouali, A. and R. de Simone, Symbolic bisimulation minimization, in: Proc.
Int'l Conference on Computer-Aided Veri�cation CAV92, LNCS 663 (1992),
pp. 96{108.

[6] Bryant, R. E., Symbolic manipulation of boolean functions using a graphical

representation, in: Proc. 22nd Design Automation Conference, 1985.

[7] Bryant, R. E., Graph based algorithms for boolean function manipulation, IEEE
Trans. on Computers C-35 (1986), pp. 677{691.

[8] Clarke, E. M., O. Grumberg and D. A. Peled, \Model checking," MIT Press,
1999.

[9] Dovier, A., C. Piazza and A. Policriti, A fast bisimulation algorithm, in:
G. Berry, H. Comon and A. Finkel, editors, Proc. of Int. Conference on

Computer Aided Veri�cation (CAV'01), LNCS 2102 (2001), pp. 79{90.

182

Dovier, Gentilini, Piazza, and Policriti

[10] Fisler, K. and M. Y. Vardi, Bisimulation and model checking, in: Proc. Correct
Hardware Design and Veri�cation Methods, LNCS 1703 (1999), pp. 338{341.

[11] Hopcroft, J. E., An nlogn algorithm for minimizing states in a �nite automaton,
in: Theory of Machines and Computations, Ed. by Zvi Kohavi and Azaria Paz,
Academic Press, 1971 pp. 189{196.

[12] Lee, C. Y., Binary decision programs, Bell System Technical Journal 38 (1959),
pp. 985{999.

[13] Lee, D. and M. Yannakakis, Online minimization of transition systems, in: Proc.
24th ACM Symposium on Theory of Computing, 1992, pp. 264{274.

[14] Lee, D. and M. Yannakakis, Online minimization of transition systems, in: Proc.
of 24th ACM Symposium on Theory of Computing (STOC'92) (1992), pp. 264{
274.

[15] McMillan, K. L., \Symbolic model checking: an approach to the state explosion
problem," Kluwer Academic Publishers, 1993.

[16] Paige, R. and R. E. Tarjan, Three partition re�nement algorithms, SIAM
Journal on Computing 16 (1987), pp. 973{989.

[17] Paige, R., R. E. Tarjan and R. Bonic, A linear time solution to the single

function coarsest partition problem, Theoretical Computer Science 40 (1985),
pp. 67{84.

[18] Sanghavi, J. V., R. K. Ranjan, R. K. Brayton and A. Sangiovanni-Vincentelli,
High performance bdd package based on exploiting memory hierarchy, in: Proc.
of ACM/IEEE Design Automation Conference, 1996.

[19] Somenzi, F., Binary decision diagrams (1999), available at
http://citeseer.nj.nec.com/somenzi99binary.html.

[20] Somenzi, F., \CUDD: CU Decision Diagram Package Release 2.3.1," 2001,
available at http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html.

[21] Tarjan, R. E., Depth �rst search and linear graph algorithms, SIAM Journal on
Computing 1 (1972), pp. 146{160.

183

